图书介绍

微分几何讲义 第2版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

微分几何讲义 第2版
  • 北京师范大学数学科学学院主编;王幼宁,刘继志编著 著
  • 出版社: 北京:北京师范大学出版社
  • ISBN:9787303128822
  • 出版时间:2011
  • 标注页数:267页
  • 文件大小:10MB
  • 文件页数:288页
  • 主题词:微分几何-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

微分几何讲义 第2版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1章 预备知识1

1.1向量代数复习1

一、E3中Descartes直角坐标系O-xyz中的点与向量1

二、向量空间R3(起点自由)1

三、E3中向量的乘积2

四、在初等几何中的应用示例3

习题1.14

1.2向量函数微积分5

一、E3中实变向量函数5

二、向量函数的极限、连续和微积分简介5

三、常用几何条件的解析判定式7

习题1.29

1.3标架和标架场10

一、E3中的单位正交右手标架及其变换10

二、E3中的刚体运动与等距变换12

三、E3中的正交标架场的运动公式13

四、E3中的仿射标架14

习题1.315

第2章 曲线的局部微分几何16

2.1参数化曲线与曲线的参数表示16

一、E3中参数化曲线的定义16

二、正则曲线17

三、曲线的等价19

习题2.122

2.2曲线的弧长和弧长元素23

一、E3中正则曲线段的长度23

二、弧长和弧长参数24

习题2.226

2.3曲线的曲率和Frenet标架27

一、曲率27

二、Frenet标架29

习题2.334

2.4曲线的挠率和Frenet公式35

一、挠率35

二、Frenet公式38

习题2.439

2.5曲线在一点附近的结构40

一、曲线的局部规范形式40

二、曲线的局部近似曲线40

三、曲线的切触42

习题2.542

2.6曲线论基本定理43

一、一般结果43

二、平面曲线的相对曲率45

习题2.648

2.7特殊曲线组49

一、Bertrand曲线49

二、渐伸线与渐缩线51

三、单参数曲线族的包络53

习题2.755

第3章 曲面的第一基本形式56

3.1参数化曲面56

一、E3中参数化曲面的定义56

二、正则曲面58

三、正则曲面的切平面和法线59

四、参数变换61

五、参数曲面的等价62

习题3.163

3.2直纹面与可展曲面64

一、直纹面及其上的参数变换64

二、可展曲面及其局部形状分类67

三、单参数曲面族的包络70

习题3.273

3.3曲面的第一基本形式74

一、曲面上的弧长元素74

二、第一基本形式75

三、交角与面积元素78

习题3.382

3.4局部等距对应83

一、局部等距对应83

二、曲面的内蕴几何学概念85

习题3.486

3.5局部正交参数网与等温参数87

一、一般结论与正交网87

二、等温参数88

习题3.589

第4章 曲面的第二基本形式与曲面上的曲率90

4.1曲面的第二基本形式90

一、切点邻近点到切平面的有向距离90

二、第二基本形式91

三、在容许参数变换下的行为92

习题4.193

4.2法曲率94

一、曲面上曲线的曲率94

二、曲面的法曲率96

习题4.297

4.3自然标架的运动公式98

一、Einstein和式约定98

二、曲面的基本公式99

三、测地曲率的内蕴公式101

习题4.3102

4.4 Weingarten变换103

一、Weingarten矩阵的性质103

二、Weingarten变换与Euler公式104

习题4.4106

4.5曲面上的曲率概念107

一、主曲率107

二、Gauss曲率和平均曲率108

三、Gauss映射和第三基本形式109

习题4.5110

4.6曲面的特殊参数网111

一、曲率线和曲率线网111

二、渐近曲线和渐近曲线网113

习题4.6114

4.7曲面一点附近的形状115

一、曲面的局部规范形式115

二、曲面的局部近似曲面116

习题4.7117

4.8特殊曲面的曲率特征118

一、可展曲面的曲率特征118

二、曲面面积的第一变分公式119

三、极小曲面120

习题4.8121

第5章 曲面论基本定理122

5.1曲面论基本方程122

一、Gauss-Codazzi方程122

二、Gauss-Codazzi方程的独立性123

三、Gauss绝妙定理125

习题5.1126

5.2曲面论基本定理127

一、相关方程及其解的性质127

二、曲面论基本定理的证明和说明129

习题5.2130

第6章 曲面的内蕴几何初步131

6.1测地曲率与测地线131

一、测地曲率的Liouville公式131

二、测地线基本概念132

三、弧长的第一变分公式与局部短程线134

习题6.1137

6.2指数映射与测地坐标系139

一、指数映射及其性质139

二、法坐标系性质141

三、测地极坐标系性质141

四、测地凸域143

习题6.2146

6.3常曲率曲面与非欧几何模型147

一、常曲率曲面的局部等距147

二、常曲率曲面在E3中的代表148

三、抽象曲面与非欧几何模型149

习题6.3153

6.4局部Gauss-Bonnet公式154

一、Gauss-Bonnet公式154

二、非欧几何中的三角形内角和156

习题6.4157

6.5曲面上切向量的局部平移158

一、抽象曲面的切平面158

二、切平面等距同构的微元表示159

三、切向量场的绝对微分161

四、切向量的Levi-Civita平移163

五、内蕴角差164

习题6.5166

6.6 Cayley-Klein-Hilbert度量形式下的双曲几何167

一、Cayley-Klein-Hilbert度量与Beltrami-Klein坐标系167

二、曲线及其在对应欧氏空间中的直观167

三、两点间距公式和交比168

四、交角与三角形余弦定理172

五、双曲变换群的生成173

习题6.6178

第7章 曲线的整体性质初步180

7.1夹角的整体可微性180

习题7.1184

7.2平面曲线切线的旋转指标定理185

习题7.2187

7.3平面凸闭曲线特征188

习题7.3190

7.4卵形线191

习题7.4193

7.5平面曲线的等周不等式194

习题7.5197

7.6球面闭曲线的整体性质198

习题7.6202

7.7 E3中闭曲线的全曲率203

习题7.7205

7.8曲线的整体弯曲量度206

一、弧段的比较206

二、闭曲线的曲率平均值208

习题7.8209

第8章 曲面的整体性质初步210

8.1曲面片与曲面210

习题8.1215

8.2完备曲面216

习题8.2222

8.3管状面Willmore不等式223

习题8.3228

8.4凸闭曲面特征229

习题8.4231

8.5整体Gauss-Bonnet定理232

习题8.5236

8.6曲面上的若干微分算子237

一、S上的函数的微分和梯度237

二、S上切向量场的平移和绝对微分239

三、S上的散度算子div241

四、S上的Beltrami-Laplace算子△s242

习题8.6243

8.7球面的刚性244

习题8.7246

8.8 Poincare指标定理247

习题8.8251

8.9抽象曲面的几何结构概述252

参考文献254

索引255

热门推荐