图书介绍
真核生物转录调控 概念,策略和方法 英文版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- (美)MichaelCarey,(美)StephenT.Smale著 著
- 出版社: 北京:清华大学出版社
- ISBN:7302050732
- 出版时间:2002
- 标注页数:640页
- 文件大小:73MB
- 文件页数:655页
- 主题词:
PDF下载
下载说明
真核生物转录调控 概念,策略和方法 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 A PRIMER ON TRANSCRIPTIONAL REGULATION IN MAMMALIAN CELLS1
INTRODUCTION2
A general model for regulation of a gene2
Activating a gene3
Inactivating a gene5
Overview5
CONCEPTS AND STRATEGIES:Ⅰ.PROMOTERS AND THE GENERALTRANSCRIPTION MACHINERY5
Core promoter architecture8
The general transcription machinery10
Basal transcription complex assembly11
Conformational changes during transcription complex assembly11
TAFⅡs12
Discovery ofthePol Ⅱ holoenzyme14
The holoenzyme and mediators14
Composition of the yeast holoenzyme15
Mammalian holoenzymes16
ContentsPreface17
CONCEPTS AND STRATEGIES:Ⅱ.ACTIVATORS AND REPRESSORS18
Regulatory promoters and enhancers18
Transcriptional activators20
Modular activators20
Overviewx21
DNA-binding domains21
Activation domains21
Structural aspects of activation domains22
Repressors and corepressors23
General mechanisms23
Sequence-specific repressors24
Abbreviations and Acronyms25
CONCEPTS AND STRATEGIES:Ⅲ.CHROMATIN ANDGENE REGULATION25
Chromatin25
Structure and organization25
Binding of transcription factors to chromatin26
Genetic links between gene actwation and chromatin27
ATP-dependent remodeling complexes27
SWI/SNF complexes27
Mechanisms and targeting29
Acetylation of chromatin31
Mammalian acetylases32
TAFs and chromatin remodeling32
Histone deacetylation,transcriptional repression,and silencing32
Repression and deacetfylases33
Linking deacetylation and ATP-remodeling machines33
Methylation and repression34
Locus control regions,insulators,and matrix attachment regions35
Locus control regions35
Transcriptional silencing35
Boundary elements37
MARs38
CONCEPTS AND STRATEGIES:Ⅳ.THE ENHANCEOSOME38
Combinatorial control,cooperativity,and synergy38
The enhanceosome theory39
The interferon-β enhanceosome40
Biochemical mechanism of activation41
Perspective42
2 INITIAL STRATEGIC ISSUES51
The initial steps in a gene regulation analysis52
CONCEPTS AND STRATEGIES52
INTRODUCTION52
Consider the time commitment and resources needed to reach a defined goal54
Two general strategies that provide preliminary albeit superficial insight into transcriptional regulation mechanisms54
An example ofa rigorous,yet incomplete gene regulation analysis:The immunoglobulin μ heavy-chain gene55
Defining the project goals57
Evaluate the feasibility of the analysis57
Appropriate source of cells for functional studies57
Source of cells for protein extract preparation59
Success in developing an appropriate functional assay59
Initiate an analysis of transcriptional regulation61
Beginning with the promoter or distant control regions61
Summary62
Initiating an analysis of a promoter62
Initiating an analysis of distant control regions62
3 MODES OF REGULATING mRNA ABUNDANCE65
INTRODUCTION66
CONCEPTS AND STRATEGIES66
Transcription initiation versus mRNA stability66
Basic mRNA degradation pathways67
Regulation of mRNA stability and degradation68
Interrelationship between mRNA stability and transcription initiation70
Confirming that the rate of transcription initiation contributes to gene regulation71
Nuclear run-on transcription assay (Box 3.1)72
Measuring mRNA stabilities73
Recommended approach for demonstrating regulation of transcription initiation or mRNA stability77
Transcription elongation78
Basic mechanism of elongation78
Regulation of transcription elongation in prokaryotes79
Regulation of transcription elongation in eukaryotes80
Strategies for distinguishing between regulation of elongation and regulation of initiation82
Recommended approach for demonstrating regulation of transcription initiation or elongation83
Extending an analysis of elongation regulation84
Differential pre-mRNA splicing,mRNA transport,and polyadenylation85
Basic principles85
Identifying regulation of pre-mRNA splicing,transport,and polyadenylation86
Protocol 3.1 Nuclear run-on assay87
TECHNIQUES87
4 TRANSCRIPTION INITIATION SITE MAPPING97
INTRODUCTION98
CONCEPTS AND STRATEGIES99
Initial considerations99
Reagents needed before proceeding99
Information provided by the DNA sequence99
Primer extension102
Advantages and disadvantages102
Design of oligonucleotide primers102
Method(Box 4.1)103
Analysis of example data104
Primer annealing and reverse transcription104
RNase protection105
Advantages and disadvantages105
Probe preparation105
Method(Box 4.2)106
Probe annealing and RNase digestion108
Analysis of example data108
S1 nuclease analysis109
Advantages and disadvantages109
Probe preparation109
Method(Box 4.3)109
Analysis of example data111
Advantages and disadvantages112
Data analysis112
Method(Box 4.4)112
Rapid amplification of cDNA ends112
Effect of introns on the interpretation of start-site mapping results(Box 4.5)114
TECHNIQUES116
Protocol 4.1 Primer extension assay116
Protocol 4.2 RNase protection assay124
Protocol 4.3 S1 nuclease assay130
5 FUNCTIONAL ASSAYS FOR PROMOTER ANALYSIS137
I NTRODUCTION138
Choosing an assay:Advantages and disadvantages of each assay141
CONCEPTS AND STRATEGIES141
Transient transfection assay142
Stable transfection assay by integration into host chromosome144
Stable transfection of episomally maintained plasmids145
In vitro transcription assay145
Transgenic assays146
Homologous recombination assay147
Transient transfection assays147
Cells148
Transfection procedures (Box 5.1)148
Reporter genes,vectors,and assays(Boxes 5.2,5.3,5.4)150
Plasmid construction155
Initial transfection experiments157
Assessing appropriate promoter regulation(Boxes 5.5,5.6)159
Stable transfection assays by chromosomal integration160
General strategies160
Cells and transfection procedures162
Reporter genes and assays165
Drug-resistance genes and vectors165
Plasmid construction168
Drug selection169
Controls and interpretation of results171
Common transfection methods for mammalian cells172
TECHNIQUES172
Protocol 5.1 Calcium phosphate transfection of 3T3 fibroblasts174
Protocol 5.2 DEAE-dextran transfection of lymphocyte cell lines176
Protocol 5.3 Transfection by electroporation of RAW264.7 macrophages178
Common reporter enzyme assays180
Protocol 5.4 Luciferase assay181
Protocol 5.5 Chloramphenicol acetyltransferase assay183
Protocol 5.6 β-Galactosidase assay186
6 IDENTIFICATION AND ANALYSIS OF DISTANT CONTROL REGIONS193
INTRODUCTION194
DNase I hypersensitivity195
Basic principles of DNase I sensitivity and hypersensitivity195
CONCEPTS AND STRATEGIES195
Advantages and disadvantages of using DNase I hypersensitivity to identify control regions197
DNaseI hypersensitivity assay(Box 6.1)198
Data interpretation200
Identification of matrix attachment regions200
Basic principles of the nuclear matrix and of MARs and SARs200
Advantages and disadvantages of usingMARs to identify distant control regions200
Methods for identifying MARs(Box 6.2)201
Functional approaches for the identification of distant control regions201
Basic advantages and disadvantages of functional approaches201
Functionalapproach beginningwith a large genomic DNA fragment203
Functional approach beginning with smaller fragments directing expression of a reportergene204
Functional assays for the characterization of distant control regions205
Transient transfection assays205
Stable transfection assays206
Demonstration of LCR activity208
Demonstration of silencer activity209
Demonstration of insulator activity209
7 IDENTIFYING cis-ACTING DNA ELEMENTS WITHIN A CONTROL REGION213
INTRODUCTION214
CONCEPTS AND STRATEGIES215
Identification of control elements by comprehensive mutant analysis215
Rationale for a comprehensive anialysis215
The Ig μ gene example216
Disadvantages of using mutagenesis to identify control elemen219
Strategies for a comprehensive analysis220
Methodology for mutating a control region235
Identification of control elements using in vivo or in vitro protein-DNA interaction methods235
Advantages and disadvantages235
Identification of control elements by database analysis237
Advantages and disadvantages237
Mutagenesis techniques(Boxes 7.1-7.6)238
8 IDENTIFICATION OF DNA-BINDING PROTEINS AND ISOLATION OF THEIR GENES249
INTRODUCTION250
Database methods252
CONCEPTS AND STRATEGIES FOR THE IDENTIFICATION OF DNA-BINDING PROTEINS252
Development of a protein-DNA interaction assay for crude cell lysates253
Standard methods for detecting protein-DNA interactions253
Electrophoretic mobility shift assay(Box 8.1)257
DNase I footprinting268
CONCEPTS AND STRATEGIES FOR CLONING GENES ENCODING DNA-BINDING PROTEINS272
Cloning by protein purification and peptide sequence analysis(Box 8.2)276
Amount of starting material276
Conventional chromatography steps277
DNA affinity chromatography277
Identification of the relevant band following SDS-PAGE(Box 8.3)278
Amino acid sequence analysis and gene cloning279
Confirmation that the gene isolated encodes the DNA-binding activity of interest282
Cloning by methods that do not require an initial protein-DNA interaction assay283
One-hybrid screen283
In vitro expression library screening with DNA or antibody probes285
Mammalian expression cloning methods287
Genome database methods and degenerate PCR288
9 CONFIRMING THE FUNCTIONAL IMPORTANCE OF A PROTEIN-DNA INTERACTION291
INTRODUCTION292
CONCEPTS AND STRATEGIES294
Abundance of a protein-DNA complex in vitro294
Relative expression patterns of the DNA-binding protein and target gene295
Correlation between nucleotides required for protein binding and those required for activity of the control element296
trans-Activation of a reporter gene or endogenous gene by overexpression of the DNA-binding protein297
Cooperative binding and synergistic function of proteins bound to adjacent control elements299
Comparison of genomic and in vitro footprinting patterns301
Relative affinity of a protein-DNA interaction302
Gene disruption or antisense experiments304
Dominant-negative mutants305
In vitro transcription strategies308
In vivo protein-DNA crosslinking310
Altered specificity experiments313
10 IN VIVO ANALYSIS OF AN ENDOGENOUS CONTROL REGION319
INTRODUCTION320
DNase I and DMS genomic footprinting(Box 10.1)321
In vivo analysis of sequence-specific protein-DNA interactions321
CONCEPTS AND STRATEGIES321
In vivo protein-DNA crosslinking/immunoprecipitation326
Nucleosome positioning and remodeling326
Model systems326
Low-resolution analysis of nucleosome positioning by the MNase-Southern blot method(Box 10.2)328
High-resolution analysis of nucleosome positioning by an MNase-LM-PCR method and DNase I genomic footprin ting(Box 103)329
In vivo methods for analyzing nucleosome remodeling(Box 10.4)332
DNA methylation335
Subnuclear localization of a gene337
TECHNIQUES338
Protocol 10.1 MNase-Southern blot assay338
Restriction enzyme accessibility to monitor nucleosome remodeling347
DMS genomicfootprinting347
Protocol 10.2 LM-PCR methods347
MNase mapping of nucleosome positioning347
DNase genomic footprinting347
11 APPROACHES FOR THE SYNTHESIS OF RECOMBINANT TRANSCRIPTION FACTORS365
INTRODUCTION366
CONCEPTS AND STRATEGIES367
Prokaryotic expression systems(Boxes 11.1 and 11.2)367
Strategies for overcoming expression problems in E.coli374
Synthesizing large regulatory proteins377
Yeast systems(Box 11.3)377
Baculovirus system(Box 11.4)379
Vaccinia virus(Box 11.5)382
Retroviral expression systems(Box 11.6)384
Synthesizing small quantities of crude protein385
Specialized inducible expression systems(Box 11.7)386
In vitro transcription/translation systems(Box 11.8)388
Mammalian expression vectors(Box 11.9)389
Synthesis and purification of macromolecular complexes390
Choosing an appropriate system391
12 IDENTIFYING AND CHARACTERIZING TRANSCRIPTION FACTOR DOMAINS399
CONCEPTS AND STRATEGIES:DEFINING DOMAINS400
Basic mutagenesis principles400
INTRODUCTION400
Domains of a gene activator402
Separating DNA-binding and activation domains of an activator403
General considerations403
DNA binding404
Activation(Box 12.1)406
Limitations of the domain swap406
Subdividing DNA recognition and oligomerization subdomains(Box 12.2)409
CONCEPTS AND STRATEGIES:PROTEIN-PROTEIN INTERACTIONS410
Interaction of activation domains with coactivators and general factors410
Affinity chromatography413
Principles413
Caveats of the affinityapproach415
Altered specificity genetic systems416
Structure-function analysis of the general transcriptional machinery420
TECHNIQUES422
Protocol 12.1 PCR-mediated site-directed mutagenesis422
13 THEORY,CHARACTE RIZATION,AND MODELING OF DNA BINDING BY REGULATORY TRANSCRIPTION FACTORS433
INTRODUCTION434
CONCEPTS AND STRATEGIES436
General theory and examples of DNA-protein interactions436
Theory of DNA recognition436
Chemical basis of the interactions437
The role of the α-helix in DNA recognition437
Major and minorgroove specificity439
Monomers and dimers;energetic and regulatory considerations441
Dissociation constant analysis(Box 13.1)444
Kd determination447
Analysis and modeling of DNA-protein interactions448
Identification of a high-affinity DNA recognition site448
Basic theory449
General methods(Boxes 13.2 and 133)449
Minor groove/DNA backbone probes (Box 13.4)454
Major groove probes458
Modeling DNA-protein interactions459
Analysis of promoter-specific multicomponent nucleoprotein complexes463
DNA binding cooperativity465
DNA looping and bending466
Mechanisms of DNA bending468
Approaches for studying bending469
TECHNIQUES472
Protocol 13.1 DNase I footprinting472
Protocol 13.2 Hydroxyl-radical footprinting482
Protocol 13.3 Phosphate ethylation interference assay485
Protocol 13.4 Methylation interference assay488
Protocol 13.5 Electrophoretic mobility shift assays493
Protocol 13.6 Preparation of 32P-end-labeled DNA fragments497
14 CRUDE AND FRACTIONATED SYSTEMS FOR IN VITRO TRANSCRIPTION505
INTRODUCTION506
CONCEPTS AND STRATEGIES507
Preparation of extracts507
Cell choice507
Extract preparation method508
Transcription assays510
General considerations(Box 14.1)510
Choice of template514
Chromatin systems516
Optimization of conditions519
Fractionated systems(Box 14.2)519
Holoenzyme520
Partially fractionated systems521
Mediator subcomplexes521
Factor-depleted systems525
Highly fractionated systems526
TECHNIQUES526
Preparation of auclear and whole-cell extracts526
Protocol 14.1 The Dignam and Roeder nuclear extract528
Protocol 14.2 Preparation of nuclear extracts from rat liver532
Protocol 14.3 Preparation of whole-cell extract536
In vitro transcription assays539
Protocol 14.4 In vitro transcription using HeLa cell extracts and primer extension539
Protocol 14.5 G-less cassette in vitro transcription using HeLa cell nuclear extracts545
Transcription factor purification549
Protocol 14.6 Preparation of a crude fractionated system551
Protocol 14.7 Purification of recombinant TFIIB from E.coli556
Protocol 14.8 Purification of recombinant TFIIA560
Protocol 14.9 Affinity purification of RNA Pol Ⅱ562
Protocol 14.10 Purification of epitope-tagged TFIID567
15 APPROACHES FOR STUDYING TRANSCRIPTION COMPLEX ASSEMBLY579
INTRODUCTION580
CONCEPTS AND STRATEGIES582
Formation of the basal preinitiation complex582
Kinetic studies582
Sarkosyl probing582
DNase Ifootprinting and EMSA studies oftranscription complex assembly584
Template commitment experiment584
Photocrosslinking586
Structure-function analyses of the general machinery589
Open complex formation,initiation,and promoter escape589
ATP-analogs and an energy-dependent step589
Permanganate probing590
Premelted templates590
The transition to elongation591
Assembly of activated complexes at a promoter594
The immobilized template approach594
Permanganate probing to study activation596
Gel filtration596
EMSA and DNase I footprinting analyses of the TFIID-TFIIA complex599
Assembly and analysis of TFIID subcomplexes600
Future directions601
TECHNIQUES603
Protocol 15.1 Potassium permanganate probing of Pol Ⅱ open complexes603
Protocol 15.2 Magnesium-agarose EMSA of TFIID binding to DNA607
APPENDICES617
Ⅰ.CAUTIONS617
Ⅱ.SUPPLIERS623
Ⅲ.TRADEMARKS625
INDEX627
热门推荐
- 1231883.html
- 1869503.html
- 3327192.html
- 440338.html
- 1104138.html
- 734917.html
- 857137.html
- 2926177.html
- 1638620.html
- 3459897.html
- http://www.ickdjs.cc/book_740492.html
- http://www.ickdjs.cc/book_8636.html
- http://www.ickdjs.cc/book_233508.html
- http://www.ickdjs.cc/book_3118023.html
- http://www.ickdjs.cc/book_3458140.html
- http://www.ickdjs.cc/book_321176.html
- http://www.ickdjs.cc/book_602250.html
- http://www.ickdjs.cc/book_2076924.html
- http://www.ickdjs.cc/book_3283881.html
- http://www.ickdjs.cc/book_3728435.html