图书介绍

先进纳米薄膜材料-制备方法及应用【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

先进纳米薄膜材料-制备方法及应用
  • 林媛,陈新主编 著
  • 出版社: 北京:化学工业出版社
  • ISBN:9787122291585
  • 出版时间:2017
  • 标注页数:309页
  • 文件大小:50MB
  • 文件页数:325页
  • 主题词:纳米材料-薄膜-制备-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

先进纳米薄膜材料-制备方法及应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Pulsed Laser Deposition for Complex Oxide Thin Film and Nanostructure&Chunrui Ma and Chonglin Chen1

1.1 Introduction1

1.2 Pulsed Laser Deposition System Setup2

1.3 Advantages and Disadvantages of Pulsed Laser Deposition3

1.4 The Thermodynamics and Kinetics of Pulsed Laser Deposition3

1.4.1 Laser-Material Interactions4

1.4.2 Dynamics of the Plasma5

1.4.3 Nucleation and Growth of the Film on the Substrate Surface5

1.5 Monitoring of Growth Kinetics8

1.5.1 Introduction and RHEED Studies8

1.5.2 Growth Kinetics Studies by Surface X-ray Diffraction9

1.6 Fundamental Parameters in Thin Film Growth10

1.6.1 Substrate Temperature10

1.6.2 Background Gas Pressure10

1.6.3 Laser Fluence and Ablation Area11

1.6.4 Target-Substrate Distance11

1.6.5 Post-Annealing12

1.6.6 Lattice Misfit12

1.7 Pulsed Laser Deposition for Complex Oxide Thin Film Growth13

1.7.1 Pulsed Laser Deposition for Superconductor Thin Film14

1.7.2 Pulsed Laser Deposition for Ferroelectric Thin Films14

1.7.3 Pulsed Laser Deposition for Ferromagnetic Thin Film15

1.7.4 Pulsed Laser Deposition for Multiferroics Thin Film15

1.7.5 Interface Strain Engineering the Complex Oxide Thin Film16

1.7.5.1 Thickness Effect16

1.7.5.2 Substrate Effect17

1.7.5.3 Post-Annealing21

1.8 Pulsed Laser Deposition for Nanostructure Growth23

1.8.1 Self-Assembled Nanoscale Structures23

1.8.2 Geometrically Ordered Arrays23

1.9 Variation of Pulsed Laser Deposition24

1.10 Conclusion24

References25

2 Electron Beam Evaporation Deposition&Zhongping Wang and Zengming Zhang33

2.1 Introduction33

2.2 Electron Beam Evaporation System35

2.2.1 Heating Principle and Characters of Electron Beams35

2.2.1.1 Heating Principle of Electron Beams35

2.2.1.2 Characters of Electron Beams36

2.2.2 Equipments of Electron Beam Source37

2.2.2.1 Filament and Electron Emission37

2.2.2.2 Electron Beam Control38

2.2.2.3 Power Supply,Crucibles,and Feed Systems39

2.2.2.4 Source Materials40

2.2.3 Application of Electron Beam Evaporation43

2.2.3.1 Cooling of Electron Beam Gun43

2.2.3.2 Evaporation of Source Materials by Electron Beam43

2.2.3.3 Vacuum Deposition Process of Electron Beam Evaporation44

2.2.3.4 Attention and Warning for Electron Beam Evaporation45

2.3 Characterization of Thin Film45

2.3.1 Surface Morphology by AFM46

2.3.2 Thickness Measurement by Spectroscopic Ellipsometry47

2.4 Summary53

Acknowledgments53

References53

3 Nanostructures and Thin Films Deposited with Sputtering&Weiqing Yang59

3.1 Introduction59

3.2 Nanostructures with Sputtering60

3.2.1 Oxide Nanostructures61

3.2.1.1 Needle-Shaped MoO3 Nanowires61

3.2.1.2 Bi2O3 Nanowires64

3.2.2 Nitride Nanostructures65

3.2.2.1 Graphitic-C3N4 Nanocone Array65

3.2.2.2 InAlN Nanorods68

3.3 Thin Films Deposited with Sputtering71

3.3.1 Metal Alloy Thin Films73

3.3.1.1 LaNi5 Alloy Thin Films73

3.3.1.2 Ni-Mn-In Alloy Thin Films74

3.3.2 Composite Metal Oxide Thin Films75

3.3.2.1 BiFeO3/BaTiO3 Bilayer Thin Films75

3.4 Summary76

Acknowledgments77

References77

4 Nanostructures and Quantum Dots Development with Molecular Beam Epitaxy&Wen Huang81

4.1 Introduction81

4.2 Technology of MBE82

4.2.1 The Physics of MBE83

4.2.2 MBE Growth Mechanisms86

4.2.2.1 Two-Dimensional(2D)MBE Growth Mechanism87

4.2.2.2 Three-Dimensional(3D) MBE Growth Mechanism88

4.2.2.3 Stranskie-Krastanow 3D Growth Mechanism90

4.3 Nanoheterostructures Fabricated by Molecular Beam Epitaxy91

4.3.1 Semiconducting Oxide Heterostructures Grown by Laser Molecular Beam Epitaxy91

4.3.2 Strain-Induced Magnetic Anisotropy in Highly Epitaxial Heterostructure by LMBE96

4.4 Quantum Dots Development with Molecular Beam Epitaxy101

4.5 Summary103

Acknowledgments104

References104

5 Carbon Nanomaterials and 2D Layered Materials Development with Chemical Vapor Deposition&Taisong Pan105

5.1 Introduction105

5.2 Carbon Nanotube Synthesis by Chemical Vapor Deposition106

5.2.1 Overview of CVD Process of Carbon Nanotube Growth106

5.2.2 Control of Carbon Nanotube Structure108

5.2.3 The Alignment of Carbon Nanotube Array110

5.3 Graphene Synthesis by Chemical Vapor Deposition112

5.3.1 Overview of CVD Process of Graphene Synthesis112

5.3.2 Control of Graphene Quality113

5.4 Metal Dichalcogenide Synthesis by Chemical Vapor Deposition115

5.4.1 Overview of CVD Process of Metal Dichalcogenides115

5.4.2 Growth Control of Metal Dichalcogenides in Chemical Vapor Deposition118

5.5 Summary119

References120

6 Nanostructures Development with Atomic Layer Deposition&Hulin Zhang123

6.1 Introduction123

6.2 Reaction Mechanisms125

6.2.1 Thermal ALD125

6.2.2 Catalytic ALD127

6.2.3 Metal ALD129

6.3 Nanostructures Based on ALD131

6.3.1 Nanolaminates and Nanofilms132

6.3.2 Nanostructures as Templates132

6.3.3 Nanostructured Modification135

6.4 Summary136

Acknowledgments137

References138

7 Nanomaterial Development with Liquid-Phase Epitaxy&Weiqing Yang141

7.1 Introduction141

7.2 Hvdrothermal Method142

7.2.1 Development of Hydrothermal Method142

7.2.2 Microwave-Assisted Hvdrothermal Method143

7.2.2.1 Microwave-Assisted Preparation of Nanostructures in Aqueous Solution144

7.3 Nanostructures Fabricated Using LPE147

7.3.1 Core-Shell Structures147

7.3.2 The Epitaxial Preparation Methods of Core-Shell Structures148

7.3.2.1 General Nanochemical Approaches to Prepare Epitaxial Core-Shell UCNPs with a Single Shell Layer150

7.3.2.2 Layer-by-Layer Approach to Prepare Core-Multishell UCNPs with Monolayer Thickness Precision153

7.3.2.3 Mesoporous Silica Coating153

7.3.2.4 Coupling of UCNPs with Plasmonics Using Core-Shell Architecture154

7.4 Summary156

Acknowledgments156

References156

8 Nanostructural Thin Film Development with Chemical Solution Deposition&Yanda Ji and Yuan Lin159

8.1 Introduction159

8.2 Precursor Solution Preparation159

8.2.1 Chemical Strategies for Precursor Solutions160

8.2.2 Sol-Gel Method160

8.2.3 Metal-Organic Deposition161

8.2.4 polymer-Assisted Deposition161

8.3 Coating162

8.4 Thermal Treatment163

8.5 Control of the Microstructures in Thin Films Prepared by CSD Techniques164

8.5.1 Thermodynamics for CSD-Delivered Thin Films164

8.5.2 Epitaxial Thin Film Growth166

8.6 Examples of Nanostructural Thin Films Prepared by CSD Techniques167

8.6.1 Sol-Gel-Delivered Nanostructured Materials167

8.6.2 MOD of Nanostructured Materials168

8.6.3 PAD-Delivered Nanostructured Materials168

8.7 Summary174

References175

9 Nanomaterial Development Using In Situ Liquid Cell Transmission Electron Microscopy&Xin Chen,Wangfan Zhou,Debiao Xie,and Hongliang Cao179

9.1 Introduction179

9.2 The Technological Development of In Situ Liquid Cell TEM179

9.2.1 The Advent of the Modern In Situ Liquid Cell180

9.2.2 Recent Technological Development of Liquid Cells180

9.2.3 Commercial Liquid Cells183

9.3 Nanomaterial Development Using In Situ Liquid Cell TEM Technology185

9.3.1 Nanomaterial Growth Induced by Electrical Bias185

9.3.2 Nanomaterial Growth Induced by Irradiation187

9.3.3 Nanomaterial Formation Induced by Heating189

9.3.4 Further Nanomaterial Development Results from In Situ Liquid Cell TEM190

9.4 Summary and Outlook191

Acknowledgments191

References192

10 Direct-Writing Nanolithography&Min Gao195

10.1 Introduction195

10.2 Electron Beam Lithography195

10.3 Focused Ion Beam Lithography198

10.4 Gas-Assisted Electron and Ion Beam Lithography200

10.5 SpM Lithography201

10.6 Dip-Pen Lithography205

10.7 Summary206

Acknowledgments207

References207

11 3D Printing of Nanostructures&Min Gao209

11.1 Introduction209

11.2 3D Printing Processes209

11.3 Types of 3D Printing210

11.3.1 Stereolithography210

11.3.2 Fused Deposition Modeling211

11.3.3 Selective Deposition Lamination212

11.3.4 Selective Laser Sintering213

11.3.5 3D Inkjet Printing214

11.3.6 Multijet Modeling214

11.4 3D Direct Laser Writing by Multiphoton Polymerization214

11.5 3D Printing Applications217

11.5.1 Medical Applications217

11.5.2 Industrial Manufacturing218

11.5.3 Daily Consumption219

11.5.4 Limitation of 3D Printing Applications219

11.6 Summary219

Acknowledgments220

References220

12 Nanostructured Thin Film Solid Oxide Fuel Cells&Alex Ignatiev,Rabi Ebrahim,Mukhtar Yeleuov,Daniel Fisher,Xin Chen,Naijuan Wu,and Serekbol Tokmoldin223

12.1 Introduction223

12.2 Solid Oxide Fuel Cells223

12.2.1 Thin Film Solid Oxide Fuel Cell Fabrication225

12.2.2 Thin Film Solid Oxide Fuel Cell Testing231

12.2.3 Thin Film Fuel Cell Stack Development and Testing234

12.3 Summary237

Acknowledgments237

References237

13 Nanostructured Magnetic Thin Films and Coatings&Goran Rasic239

13.1 Introduction239

13.2 High-Frequency Devices240

13.2.1 Ferromagnets241

13.2.2 Coercivity242

13.2.3 Magnetic Losses243

13.2.4 Nanoscale Methods of Loss Reduction244

13.2.5 Manufacturing Considerations244

13.2.6 Coercivity Reduction in Surface-Patterned Magnetic Thin Films245

13.3 Magnetic Information Storage Devices251

13.3.1 Superparamagnetic Limit252

13.3.2 Signal-to-Noise Ratio253

13.3.3 Present-Day Solutions253

13.3.4 Bit Patterned Media254

13.3.5 Manufacturing Considerations255

13.3.6 Patterned Media for Magnetic Data Storage256

13.4 Summary261

Acknowledgments261

References262

14 Phase Change Materials for Memory Application&Liangcai Wu and Zhitang Song267

14.1 Introduction267

14.2 Ge2Sb2Te5 and Its Properties'Improvement268

14.2.1 Ge2Sb2Te5 Phase Change Material268

14.2.2 N-Doped Ge2Sb2Te5 Material270

14.2.3 C-Doped Ge2Sb2Te5 Material272

14.2.3.1 Film Properties and Microstructure Characteristics272

14.2.3.2 Reversible Phase Change Characteristics of C-Doped Ge2Sb2Te5274

14.3 High-Speed and Lower-Power TiSbTe Materials277

14.3.1 Film Properties and Microstructure Characteristics277

14.3.1.1 Ti-Doped Sb2Te Materials277

14.3.1.2 Ti-Doped Sb2Te3 Materials278

14.3.2 Reversible Phase Change Characteristics of TST Alloy280

14.4 Summary283

Acknowledgments283

References283

15 Nanomaterials and Devices on Flexible Substrates&Hulin Zhang285

15.1 Introduction285

15.2 Nanomaterials on Flexible Substrates286

15.2.1 Nanomaterials Synthesized Directly on Flexible Substrates286

15.2.2 Nanomaterials Transferred on Flexible Substrates290

15.3 Devices on Flexible Substrates292

15.3.1 Printing Electronics on Flexible Substrates293

15.3.2 Biointegrated Electronics on Flexible Substrates298

15.4 Summary300

Acknowledgments301

References301

Index305

热门推荐